In such telescopes, the radiation coming from the sky sources is spatially modulated by a mask consisting of an array of opaque and transparent elements and recorded by a position sensitive detector. In order to avoid ambiguities in the reconstruction of the sky image, the mask pattern is designed in such a way that the radiation from each sky direction casts a unique shadow on the detector. In contrast to focusing imaging systems, where source photons are concentrated on a small detector area, in a coded-mask instrument the photons emitted from a cosmic source are spread over the whole detector area and the recorded shadowgram is the additive contribution from all the sources inside the field of view (FOV) and from the instrumental background. By knowing the orientation of the satellite in space and by analyzing the data from the detector it is possible, through image reconstruction algorithms, to evaluate the position and the intensity of all cosmic sources and of the background level, thus reproducing the image of the observed sky. Several algorithms are used to reconstruct the sky observed with coded-mask instruments. The most widely used method for image reconstruction is the cross-correlation of the recorded data pattern with the mask pattern.
The BAT is a coded-mask detector sensitive in the 15-150 keV band used as a GRB detector on board Swift. While waiting for new GRBs, it continuously collects spectral and imaging information in hard X-rays and accumulates data in survey mode covering a fraction between 50 and 80% of the sky every day. Data are immediately made available to the scientific community in the public Swift data archive (Swift Quick-Look Data), together with all housekeeping and spacecraft attitude information. The Swift-BAT entrance window is a 2.7 m2 coded-aperture mask of 5x5 mm2 elements placed 1 m above the detector plane, with an on-axis point spread function (PSF) of 22 arcmin FWHM. The mask is designed with a pseudo-random pattern that has the advantage (with respect to cyclic patterns like e.g. the one used for ISGRI) of being quite insensitive to the possible turning off of a limited number of detector elements and to the presence of detector gaps; moreover the reconstructed images do not suffer from the presence of ghost sources caused by the periodic design of the cyclic pattern. On the other hand, it is characterized by a PSF with an extended plateau that spans over the whole image and induces cross-contaminations among sources in the same FOV. The BAT detector plane consists of 5200 cm2 array of 32,768 4x4 mm2 CdZnTe elements organized in 128 elements sub-arrays (modules) separated by thin gaps and mounted in 16 mechanical structures (blocks).
The BAT survey data are collected in the form of Detector Plane Histograms (DPH). A DPH consists of a three-dimensional array where an 80 channel spectrum is accumulated for each detector pixel over the integration period. Typical DPH integration time is five minutes, but longer integration times are sometimes found (e.g. when telemetry reduction is needed) as well as shorter integration times since survey mode is always interrupted when the spacecraft begins a slew to a new target or when entering the South Atlantic Anomaly (SAA).
Map of the 54-months survey limiting flux in the 15-150 keV band in galactic Aitoff projection,
with the ecliptic coordinates grid superimposed. The scale on the colorbar is in
erg cm-2 s-1.
The catalogue obtained by cross-correlating and merging the lists of excesses detected in the three energy bands contains 1256 source candidates. For each of them, we have searched for counterparts at lower energies using two different strategies. First we have analysed archival soft X-ray observations covering the position of the BAT excesses, applying count rate thresholds to select the most likely counterparts. With this strategy, we have been able to associate 920 BAT excesses with a single softer counterpart; for 8 BAT excesses, we found two possible counterparts. The BAT excesses lacking any association after strategy A were cross-correlated with a list of possible counterparts compiled by merging several source lists (X-ray binaries, cataclysmic variables, supernova remnants, pulsars, cluster of galaxies, different classes of active galaxies, already known soft X-ray and gamma-ray sources). This second strategy enabled us to associate 151 BAT sources with counterparts (18 with a double association, 2 with a triple association). The final catalogue contains 1079 BAT sources with at least one associated counterpart and 177 unassociated sources (~14%).
The plot below shows the distribution of the catalog sources among the different object classes. The whole sample consist of ~15.2% Galactic sources, ~49.3% extragalactic sources, ~12% sources with a counterpart at softer energies whose nature has not yet been determined and 23.5% sources with no associated counterpart
The 2nd Palermo BAT survey catalogue and the related products are available here
|
|
|
|
Contact person: